skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Vogel, Eric M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Self-aligned metal-oxide-semiconductor (MOS) capacitors are studied with several low-temperature, wet chemical silicon dioxide (SiO2) interlayers to understand their impact on electrical performance. Self-aligned MOS capacitors are fabricated with a bottom-up patterning technique that uses a poly(methyl methacrylate) brush and dopant-selective KOH etch combined with area-selective atomic layer deposition of hafnium dioxide (HfO2) and Pt. The wet chemical pretreatments used to form the SiO2 interlayer include hydrofluoric acid (HF) etch, 80 °C H2O, and SC-2. Capacitance-voltage measurements of these area-selective capacitors exhibit a HfO2 dielectric constant of ∼19, irrespective of pretreatment. After a forming gas anneal, the average interface state density decreased between 1.8 and 7.5 times. The minimum observed Dit is 1 × 1011 eV−1 cm−2 for the HF-last treatment. X-ray photoelectron spectroscopy shows an increase in stoichiometric SiO2 in the interfacial layer after the anneal. Additional carbon is also observed; however, comparison with capacitors fabricated in a nonselective process reveals minimal impact on performance. 
    more » « less
  2. Biosensors based on Electrochemical Impedance Spectroscopy (EIS) detect the binding of an analyte to a receptor functionalized electrode by measuring the subsequent change in the extracted charge-transfer resistance (RCT). In this work, the stability of a long chain alkanethiol, 16-mercaptohexadecanoic acid was compared to that of a polymer-based surface linker, ortho-aminobenzoic acid (o-ABA). These two classes of surface linkers were selected due to the marked differences in their structural properties. The drift in RCTobserved for the native SAM functionalized gold electrodes was observed to correlate to the drift in the subsequent receptor functionalized SAM. This indicates the importance of the gold-molecule interface for reliable biosensing. Additionally, the magnitude of the baseline drift correlated to the percentage of thiol molecules improperly bound to the gold electrode as evaluated using X-ray Photoelectron Spectroscopy (XPS). Alternatively, the o-ABA functionalized gold electrodes demonstrated negligible drift in the RCT. Furthermore, these polymer functionalized gold electrodes do not require a stabilization period in the buffer solution prior to receptor functionalization. This work emphasizes the importance of understanding and leveraging the structural properties of various classes of surface linkers to ensure the stability of impedimetric measurements. 
    more » « less
  3. Abstract We demonstrate a bottom-up process for programming the deposition of coaxial thin films aligned to the underlying dopant profile of semiconductor nanowires. Our process synergistically combines three distinct methods—vapor–liquid–solid nanowire growth, selective coaxial lithography via etching of surfaces (SCALES), and area-selective atomic layer deposition (AS-ALD)—into a cohesive whole. Here, we study ZrO 2 on Si nanowires as a model system. Si nanowires are first grown with an axially modulated n-Si/i-Si dopant profile. SCALES then yields coaxial poly(methyl methacrylate) (PMMA) masks on the n-Si regions. Subsequent AS-ALD of ZrO 2 occurs on the exposed i-Si regions and not on those masked by PMMA. We show the spatial relationship between nanowire dopant profile, PMMA masks, and ZrO 2 films, confirming the programmability of the process. The nanoscale resolution of our process coupled with the plethora of available AS-ALD chemistries promises a range of future opportunities to generate structurally complex nanoscale materials and electronic devices using entirely bottom-up methods. 
    more » « less